蛋白质互作组学技术及其在植物研究中的应用进展

    Progress in Protein Interactomics Technologies and Their Applications to Plants Research

    • 摘要: 蛋白质互作组学技术是一门鉴定和量化蛋白质与其他代谢物或蛋白质等分子相互作用的前沿技术,已成为研究植物系统生物学和多组学研究的重要组成部分。近年来,基于质谱的组学技术迅速发展,也促进蛋白质-代谢物相互作用(Protein-metabolite interaction, PMI)、蛋白质-蛋白质相互作用(Protein-protein interaction, PPI)的发现和验证方法取得巨大进步, 这些蛋白质互作组学技术在功能基因组和功能代谢组研究中逐渐展示出巨大的应用潜力。系统总结了过去10年不同蛋白质互作组学技术(主要包括PMI和PPI)的分析策略,并详细分析了它们各自的优缺点和适用的相互作用类型,综述了蛋白质互作组学技术在植物研究领域的应用进展,对植物蛋白质互作组学技术的应用策略和需要攻克的关键技术瓶颈进行了总结。蛋白质互作组学技术的不断发展将进一步推动植物胞内信号转导及代谢调控通路的解析,而精准解析信号网络中关键相互作用将为植物自身生长发育以及适应外界环境等机制研究提供重要的信息。

       

      Abstract: Protein interactomics is a cutting-edge technology to identify and quantify the interaction of proteins with other metabolites or molecules like proteins, which has been an important part of plant systems biology and multi-omics research. In recent years, the rapid development of mass spectrometry-based omics technologies has facilitated great progress in methodologies for discovery and verification of the protein-metabolite interaction (PMI) and protein-protein interaction (PPI), which are the main protein interactomic technologies, showing great potential for applications in plant functional genomic and metabolomic studies gradually. Here, we present a systematic overview of the analysis strategies of different protein interactomics technologies (including PMI and PPI) in the past decade and analyze their advantages, disadvantages and specific applicable interaction types. The application progress and application strategies of protein interactomics technologies in plant research and the key technical bottlenecks that need to be overcome are also summarized. In the near future, the continuous development of interactomics technologies will further leverage the analysis of intracellular signal transduction and metabolic regulatory pathways in plants, and precise analysis of key interactions in signal networks will provide important information for the studies of the growth and development of plants and their adaptation to external environment.

       

    /

    返回文章
    返回