巨膜长蝽在荒漠草原的空间分布型及其抽样技术

    Spatial distribution pattern and sampling technique of Jakowleffia setulosa from desert grassland

    • 摘要: 应用6种聚集度指标对巨膜长蝽(Jakowleffia setulosa)在荒漠草原区的空间分布型进行测定,结果表明该虫呈现聚集分布。Taylor 幂法则分析方程为lgS2= lg0.1987 + 2.0167lgm,由于b(2.0167)>1,表明巨膜长蝽的分布类型符合聚集分布。Iwao 的M*-m 回归方程为M*=1.492 + 1.206m,表明巨膜长蝽在荒漠地区分布型的基本成分是个体群,个体间相互吸引;个体群的空间分布型为聚集分布。聚集均数姿结果均大于2,说明巨膜长蝽聚集的原因是由于本身行为与环境因素的作用引起的。Iwao 的理论抽样数模型计算得出巨膜长蝽的理论抽样数模型院D = 0.1 时,n =249.22/m+20.69;D=0.2 时,n=62.3125/m+5.1725。采用M*-m 关系的序贯抽样模型制定出巨膜长蝽的序贯抽样模型为院T1(n),T0(n)=20n依11.52。

       

      Abstract: Six aggregation indices were used to identify the spatial distribution pattern of Jakowleffia setulosa. The results show that this pest has an aggregated distribution pattern. Taylor power law analysis equation is lgS2= lg0.1987 + 2.0167lgm, b (2.0167) >1, which shows that the distribution type meets the aggregated distribution. According to Iwao's M*-m regression equation: M *=1.492+1.206m, the basic element of distribution pattern in the desert is an individual group, individuals are attracted to each other and the individual groups are aggregated distribution pattern. The aggregation mean 姿(姿>2) indicates that the cause of aggregated distribution of J. setulosa is due to their own behavior and the role of environmental factors. The theoretical sampling model of J. setulosa is n=249.22/m+20.6(D=0.1), n=62.3125/m+5.1725(D= 0.2). The sequential sampling model is T1(n), T0(n)=20n依11.52.

       

    /

    返回文章
    返回