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Abstract: The discovery of male sterile lines in rice laid a foundation for the successful use of heterosis in rice, greatly
improved the yield per unit area of rice, and provided a strong guarantee for solving the problems of food security. As a male
reproductive organ, anther development is closely related to pollen fertility. Clarifying the mechanism of anther development
is of great theoretical and practical significance for rice production. In the antioxidant system, the production and clearance
of reactive oxygen species (ROS) are in a state of dynamic equilibrium. In order to further explore ROS homeostasis in the
development of rice anthers, this review summarizes the research progress of 21 ROS homeostasis regulation genes related to
rice anther development. Among these isolated genes, three ROS—clearance genes (OsRbohl, OsRboh3 and OsHXK1) and six
ROS-clearance genes (OsCATB/2, cCu/Zn-SOD1, OsALDH2b, OsCOX11, OsMT-1-4b and OsMT2b), which mainly encode
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enzymes, can directly regulate the content of ROS. Three genes (OsMADS3, bHLH142 and OsAGO2), encoding transcription

factors, can affect anther development by directly regulating the expression of ROS homeostasis genes. It also includes 9 genes

(OsSAPK2, OsRACKIB, DTC1, EDTI, OsHSP60-3B, OsBP1, ADTI1, OsTMS19, and DPSI) that encode other proteins,

which mainly regulate ROS levels and pollen formation through protein—protein interactions. Finally, the in—depth study of ROS

homeostasis genes in rice anthers is prospected, with an aim to provide new ideas and references for revealing the molecular

mechanism of rice anther development.

Key words: rice; anther; male sterile; ROS homeostasis; ROS production and clearance; expression
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Fig. 1 Gene regulatory network for ROS production and clearance involved in rice anther development
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Table 1 ROS homeostasis regulation genes involved in rice anther development
SEDH i 2K 14 FIREPAL ity =il S 30k
Gene Encoded protein Expression site Plant phenotype Reference
OsRbohl NADPH %L TELHHZRAVMET RRRGEZ G, METRE [33]
OsRboh3 NADPH % fL./if} LGOI FRASRAETE AR, HUHEZ PCD S [34]
OsHXK] Ok TELGOIH )2 PEFRIRRAUEL 2 IR, /MR AR [39]
OsCATB/2 BURR N Sk, 25 LA Z N, BRI AT [42-43 ]
cCu/Zn-SODI  BF AL bl GEARRAEZ /N LR, AR A [45]
OsALDH2b RIS AU Lk, Tk AL RGUE A RIRER, MOF R S [50]
0sCOX11 AR C AL TELGHE)Z ZEAF RO PCD 44T [53]
OsMT-1-4b EAE = RIS RNAQ A B AL K 77 6 [10]
OsMT2b SIREE N S R [55]
OsMADS3 MADS %45 K1 TELHHZRVMET  RRIRGIEZ MK, TE25REZRL [10]
bHLH142 bHLH % 5% ¥ 12y W FIIMRACZG/NATTR, /MET IR [59]
0s4GO2 AGO &1 L2 AR K, MEFRE R [39]
OsSAPK2 2R | SRR G TELGOH)Z: SAFIRGLH)Z PCD 1T [62]
OsRACKIB ~ WD-40 BB IHZE [ 12y W FGMRACZINATTR, IEM NEER B [63]
DTCI DCD #5#45f KELCH EEJFHEH 12 FRATNRGREE 2 ARIEIR , AERyIPRE R S [55]
EDTI ATP- FrGER ALt ity 4t GABRIEL /N, B PCD iR [64]
OsHSP60-3B $VAK5E 60 H [ K3 SAFRIEAE A, LT RE S [65]
OsBPI UDP FijZH 4- 22 1] S F ity TEZGOH)ZAAEZTRE SR GRS 2 e i) S22 A 3R [66]
ADTI FERERE LA TELGOIH )2 FEAFRGIHLZ PCD $2 [67]
OsTMS19 PPR #E i) FRARIEZ /N [68]
DPSI CBS Z5 3R F1 DUF21 £5 ksl 1 4T RABIRAELG % B [69]
R BN, OsCATB/2 BIGHIVEAEZIMTIN, W) FHERIEZ S A7 o)

%*ﬁjﬁ/\fﬁ [43]
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1 DPSIT) EER (R 1) o

31 mAAFEREFEER

3.1.1 OsMADS3 OsMADS3 % 5% & MADS-box
ZEM A5G SRR T, osmads3-4 2875 (R FE I H 45,
W 5, G RER TG, MR,
AERITEARAS T . E— 2P 058 2 3, OsMADS3
Al EH# S OsMT-1-4b WA sl T45 & ki 38
Ko PRINEIRI OsMT-1-4b Al A RHERE 0,7,
MR B R F R i, B2 ROS RS il
IR, REAEZA T 0, 58 LR ML & 1%
flRbod, BREEIRFE, OsMADS3 1 — & F2 ¥
A VT OsMT-1-4b 1) 3235k #8162 ROS
RN AT .

3.1.2 bHLHI42 bHLH JEEAZ A —2% &
ol 1 IR - PR - MRGE R A, R
K ) TF ( Trans—cription factor ) % % 2 —, H
WA RNR R R R R IRE SIS A
FREE 1) DNA FEA7 08, S 5T &MY S
FRLsessl o oK AE L K 4l b & 177 A bHLH &
H, HATC %% W54 bHLH (UDTI. TDR.
EATI . OsbHLH35 F1 OsbHLHI142) N2 54k
ZikE, Hrh OsbHLHI42 8% ROS Fa S
S KT . bHLHI42 87 MR AL 258N A
FFEL . RIS AR, RIONEMEART . 2k
SR, OsMADS3 F1 OsMT2b 45 5L F 1 Hfb 24 &k
BIFWIT I, HAE S9~S12 W 0, K P, %
B bHLH142 113 5 3R 2548 ROS ¥ bR 3L [H 1
TR, FEOHRIGTE T IG5 A& ROS FUA,
HATE AR B 58 0

313 0sAGO2 0sAGO2 %t AGO (ARGONAU
TE) & M, "AEH T osHXKI 1Y & iiF, it
DNA H Itk BRI HR IR . 0sAGO2 milbRAg
PR ROS (2 B R BB 4 B HL 2 PCD 201,
W] Bf AH 5 OsRboh J F 9 23k K V-0 @ de Ay, 3%
W 0sAGO2 T3 i3 1% OsHXK1 K 4E+F ROS 2
A, M mgEHE 2 PCD AEM B IE 2 .

32 mBEXEREER

3.2.1 OsSAPK2 N #4783 ( Stress—
activated protein kinase, SAPK2) J&—ZJS22 %R /
I & R PR, JE 7% R (Abscisic acid,
ABA) (G5 IEEA T, LM, &
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2T ABA FLER, BEAE 25 ROS [ Lo
OsSAPK?2 TE /K FF AL 25 i 22 3R 307 5 28 v T Ak
M40 ABA 50 A — 2, XATREE T
YA B R A8 2 32 B 5 AR R BT S B
Fk, OsSAPK2 1] 57K R ALY FN 4 fdi v s B R A 1Y
OsRH4 HAE, W] 0sSAPK2 A] figid i 5 OsRH4
FHEAEHIEIRTT ABA 4319 ROS 7 A FI 4% B =
PCD [ & 12

3.2.2 OsRACKIB OsRACKIB %t AL 05 (A
WG C 2K, B—JE WD-40 RBEEH, A2
SR A . K FREEMNE RN
T . W98 &K B, OsRACKIB i # ikt
BRAEZ BN TE R, e NEERREIE W AT,
[ B OsRboh4 FNPT A AL Bl AR OC 36 [H 2 9 25 S 3%
ko HE—H0 &I, OsRACKIB Al 5 OsRboh4
() N— AR X IRAH EAER (3] X Sg5 LR,
OsRACKIB i#i 2t NADPH 4 #8i (1) H,0, {5 = 18 f#
KIFEIK T FIAEZ LT o

323 DTCI DTCI % i — Fh DCD &% # 5
M KELCH EZ ¥ 9 & A1 L, fEHF CpPi.
AP25. AP37. CYP704B2 #1 OsC6 1 i, H
iK% MSPI. DTMI . UDTI 1 TDR 255N 4%
dicl 7SR J2AE S10 AF 0 R R ZESR | [
BFHAC RIS MEE K B T8 . A AN, BFFEIE
KB DTC1 7] 5 ROS 1EFRHFI OsMT2b A EHAE HI2k
JEAE ROS R, #EM#EHI 45 )2 PCD, 52046
HYHIZET ),

3.24 EDTI EDTI %1 ATP- #7 1 IR 24 it T
( ATP-citrate lyase, ACL) . edtl % 7% #& 7£ S9
0TI 2R RS E e A B, 7R S8 MBI S9 JHI Y ROS
KVH R, [FIRT edtl 28 (RAEZ H ATP 7KF-
AE 12 FL A7 A1 05 2 1 2 25 B S R IR, DB AR,
EDT1 T4 &E M AA ACL BhRE, Il 5 ACLBI
HAE, FW EDTI JyRg G n] F 2L 25 ROS
MERMEERE L, RATRELGLETFH 4,
3.2.5 OsHSP60-3B  OsHSP60-3B % 1 — Fh &
HSP60-TCP1 Z5 # 3 (1 # Rk v 60 25 11, HEE A
PEMEN TR, OsHSP60-3B 1] 5 ifkh 2 5
TER IURIE B FLO6 AN AR . 7EsiRs&
PFF, oshsp60-3b FEERF R LKA, ROS
AR, (A A I A C HSPs 1 HSFs (1) 3635

W& FI; W OsHSPG60-3B i3 3 5 M AR 0 46 43 T}
Pkt X R OsHSP60-3B W] fEi i 4y
ROS 7K 55N IO 2 35 R A 26 38 SR 5 M e
Ji-BUK AR

3.2.6 OsBPI OsBPI %t UDP 754 K 4— 2217
SERAME 1 (UGEL ) |, HR e o7 T 24 A o A 24 it
¥io bpl ZE7RRGH 2 A [B] 2R R, 16k
BER B AN, ROSHEER, (RINRILN BP
HE WK UDP #4505 Ak UDP 2 2U8,  HE
OsBPI YIfem) 25 Al GE5Z M UDP-Gle 1] UDP-Gal
Ak, IS 20 B UDP-Gle B4 MA ROS FR 2 5,
B A B Z AR A L0

3.2.7 ADTI ADTI Jmtth—FpiifiE i A, 7
S6 BRI HIE N, AF SO WA R
adt] ZRAERH ROS oo B R 15 4585 )2 PCD &
ik #E—2 0 &8 ADT1 n] i@ i 5 ROS
T B8 OsMT2b A B AE H R 75 ROS Fa 285 - fily
AEgiRE o7,

3.2.8 OsTMSI9 OsTMSI9 %t — Fh g 5 1k
FEJFS) (PPR) &, FEALZHH S10 A1 S11 1A
ik, 6/ IR BIEYEANT & (Photo/thermo—
sensitive genic male sterile, P/TGMS ) [ ostms19
AR =R N RAANE, HAEZH ROS K
BEETEAER, LW ostms19 RASRE T280
RIREEE BRI &, (26 ROS S84,
L REMEZ /M TR E 168

3.29 DPSI DPSI %ifis—Fh LR e (i i 5 1
BT, EHAS CBS 25 5UR DUF21 Z544 3k, W]
5 ROS ¥ B 7 Trx1 F1 Trx20 HAE . dpsl 28751k
R/ NEARE . 2R/ A TOERR
WAEIRMG . RIWNEF. FE, dpsi 7281k
R AR A9 THS /N b 5T 855 B ROS ZKF- AT MDA
S, {HH SOD F1 CAT 3% M &%, B DPS1
i i 5 Trxl F1 Trx20 AH HAE & 1 Bk ROS, f#
ROS FaSta T V-4, dEFpfbzy ER AT (@),

4 FHEERE

ROS TS FEA A 5 & 7 ik FE v B
BEH], HRETE %2 1 21 4 ROS FaZSHH G A
S KA R ERE (F£1) o HPLLROS E
Ik 32 DR R 23 it HCAth 2 1 A9 ROS B2 25 25 R AR fF 9
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WX Z, (HXTS5REALZ LT N ROS ™
HE LR AR AEIRA o /KRG RBOH KRy
9 5L (OsRbohl~9) S 5HWIE S5 MK
B, WRBRR. TR RN
o Ui 38 e N A, H R OsRbohl Fi OsRboh3
S5 KREEZS R T . ROS 1R RS 1S CAT,
SOD, APX. POD. GSH %, {HH®IMHRE LY
A7 CAT M1 SOD, HAth ROS JHBRFH E B S
LKFEIE 2 & B SAFAEDIRETUAR M A AT A1, BLAh,
XFZH5IRBEKEIZ KB ROS A A
TIPS T A 4T, G, F R T Ll
RN 4% 3L H 2 H box FFAIRIINANGS G 1Y
LR GEIEWT, F R AELH s a R,
JE T RE M T T R ROS T R 5L K ok 2 5 K A
Wik E? HAT, T ROS Fal i 5t N 722 6
BT EAE R M AEIRA . HIL, K
T LA Bl S SR ) W I B AR R AT ROS 11 3
ARk, IEXF ROS HHATE R -

A, fEZ540E)Z PCD 324K 25 ROS FaZsk
TR, ROS Fa KT i 2 i 2 (i 15 40 5 2
PCD 2RISR, SEAEMME. BIREH 30
AN KRGS 2 PCD R R 4 2, EAX
FRF osmads3 . dtcl. ago2 Fl edtl “5/DEILA %R
AR, HEHrirssilh, 92 PCD AU
— R AE YRS, ARE ROS Y48 b 34
F1 PCD {55 H B B[R] 0] 432k PCD #2465 F1 PCD
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